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Abstract. The subject of this paper is analysis of high-speed planing-craft wave impact, with the inclusion of hull-
surface compliance. The analysis methods were extended in an effort to develop compliant-surface technology for
wave-impact shock reduction. The practical outcome of this work, along with experimental cylinder drop-test
evaluations, have been reported previously. The overall technology developed is composed of compliant plates
over a sub-length of the boat hull. The plates are hinged at the boat keel and supported by vented air bags at
the chines. Thus, the required analysis has coupled hydrodynamic, gas-dynamic, and structural-dynamic parts.
Only the hydrodynamic part of the complete model is covered here. On the basis of the cylindrical geometry of
the drop-test cylinder, two-dimensional theory has been used exclusively. The time history of the distribution of
plating deflection predicted from the full analysis is imposed in the free-falling cylinder analysis to demonstrate
execution of the hydrodynamic part of the complete coupled theory. The reductions in impact acceleration reported
here are therefore the same as determined from the complete analysis.
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1. Introduction

The impact of high-speed boats in sea surface waves is the dominant effect limiting the ability
of the boat to operate at the desired high speed. Tens of g’s of impact acceleration typically
occur, resulting in short-term damage to the hull, the equipment, and the human occupants as
well. It has therefore been the subject of extensive research for many years, beginning with
the benchmark works of von Kármán [1] and Wagner [2].

The modern hydrodynamic model is still based on low-aspect-ratio theory, such that the
cross-sections of the vertically impacting craft exhibit approximately two-dimensional flow
corresponding to vertically impacting symmetric cylinders.

The theory of Vorus [3] was recently developed for symmetric cylinder-impact analysis,
and applies directly to steady, calm water planing of prismatic hulls. The analysis presented
here is an extension of the rigid-cylinder impact theory of [3]. The theory of [3] has also
provided a sound basis for extension to other configurations, such as dynamic effects of
internal sprung mass on impact [4], impact of asymmetric hull forms [5], calm-water planing
of non-prismatic hull forms [6–8], planing in rough water [8], multi-hull impact and planing
[8].

The extension presented in this paper is to free-fall cylinder impact, where the cylinder
bottom plating deflects spatially, in the section, and in time, in an arbitrary, but specified
pattern. This theory is required as one part of any analysis aimed at evaluating the benefits of
hull compliance on wave-shock impact reduction.
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The theory and numerical model for the compliant surface technology development [9],
were for the full time-domain hydro-elastic analysis. The analysis there served as the design
tool for the ‘LocalFlex’ shock-reduction system under development, with evaluations from
drop-test experiments. In that analysis, with the two-dimensional geometry assumed, the cyl-
inder plating is modeled as an elastic strip-beam hinged at the keel and supported by vented
air-bags at the chine. The full theory of that model is not presented here. Instead, the time
history of the distribution of plating deflection predicted from the full analysis is imposed
on the cylinder plating in free-fall impact to demonstrate execution of the hydrodynamic part
of the complete coupled theory. The reductions in impact acceleration reported in [9] are
therefore the same as demonstrated here. The impact reduction shown in the following is
actually slightly improved over that reported in [9], relative to the experimental predictions,
due to refinement of one of the general coupled analysis algorithms.

2. Hydrodynamic theory

Figure 1 below depicts the generalized-cylinder hydrodynamic-impact problem and its math-
ematical model, following the theory developed in [3]. For this analysis the cylinder geometry
is considered, like thin-hydrofoil theory, as a superposition of small normal camber, δ(z, t),
on a nose-tail line at angle β0(t). The height of the contour point (z, t) above the undisturbed
waterline is yc(z, t), as shown on Figure 1:

yc(z, t) = −Ywl(t) + hc(z, t), 0 ≤ z ≤ zc(t), (1)

with the height above the cylinder keel being:

hc(z, t) = z tan β0(t) + δ(z, t)

cos β0(t)
. (2)

It is appropriate to note here that δ(z, 0) need not be zero in the development to follow.
The cylinder falls with velocity V (t) such that the water depth to the keel at any time t is:

Ywl(t) =
t∫

t0=0

V (t0)dt0. (3)

V (t), β0(t), and δ(z, t) in (1) through (3) can be considered as either specified, as is the case
here, or to be determined from dynamic force-equilibrium conditions.

By the base theory of Vorus [3], dynamic and kinematic boundary conditions are satisfied
with (1) on the z-axis via geometric linearization based on small deviation from hull-contour
flatness. This is the same asymptotics as that of the early models of [1] and [2], as well as
most others implemented since that time, e.g. [10], [11], and the asymptotic theory of [12].
The difference in the theory used here is that the hydrodynamic nonlinearities are retained
in the boundary conditions. This is considered required for mathematical consistency on the
basis that, as the cylinder approaches the flatness limit and increasing geometric linearity, the
hydrodynamics becomes increasing nonlinear due to the increasing ‘squeeze flow’ outward
from the keel beneath the cylinder. Recognizing and incorporating the two different limits
associated with the geometry versus the hydrodynamics is considered to be the most unique
feature of the theory of [3].
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Figure 1. Hydrodynamic model of cylinder impact. Figure 2. Mathematical model.

The description of Figure 1 is for the so-called ‘chine-unwetted’ (CUW) flow. Conversely,
when the jet-head reaches the chine and the penetration phase of the impact commences, the
orders of magnitude of the flow velocities drop abruptly. The impact force also drops abruptly
as ‘chine-wetting’ (CW) occurs, so that this regime is not so important from the standpoint of
overall impact reduction.

The model of Figure 1b is in terms of z-axis vortex sheets, Figure 2, where the unknown
vortex strengths are the negatives of twice the unknown contour tangential velocities, respect-
ively, by the usual prescription; this is covered in the following development. On Figure 1b, the
kinematic boundary condition (KBC) for specified drop-velocity, V (t), and contour height,
h(z, t), is satisfied from the keel to the zero pressure point, zc(t), in terms of the vortex
distribution at any time t . The dynamic boundary condition (DBC) of zero pressure is satisfied
in the jet-head segment between zc(t) and zb(t). Zero pressure is also satisfied trivially on the
z-axis beyond the jet-head with an identically zero vortex distribution, as the outward velocity
is of higher order there.

For the CUW flow regime depicted on Figure 1, the zero pressure offset lies on the hull
normal which tangents the turn of the jet head. The projections to the z-axis provide for the
very short free-vortex segment zc to zb where zero pressure must be satisfied from the non-
linear dynamic-pressure boundary condition. For the subsequent CW flow, zc(t) is locked to
the chine, zc(t) = Zch(t), and zb(t) continues traversing from under the cylinder and outward
across the free surface. In that case the free-vortex segment lengthens continually with time
from the very short CUW level.

As shown on Figure 2, the z-axis coordinates are scaled on the zero pressure point offset
zc(t) as: ζ = z/zc(τ ), b(τ) = zb(τ)/zc(τ ) and dimensionless time is τ = V (0)t/Zch(0),
where Zch is the cylinder chine offset (Figure 1) where transition to CW flow occurs.

The solution of the Figure 1, or Figure 2, model proceeds in a forward time-stepping
iteration from the initial wedge similarity solution which occurs first on contacting the water
surface. For the CUW flow, Figure 1, for given V (t), Zch(t), β0(t), and δ(z, t), the solution
unknowns at each time step are zc(t), zb(t), and the jet-head separation velocity Vs1(t) at zc(t).
For the CW flow there are only two solution unknowns, as zc(t) = Zch(t) is known from the
cylinder geometry.
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The nonlinear solution iteration for the CUW flow proceeds in terms of three conditions:
continuity of velocity, continuity of pressure, and continuity of displacement. The CW solu-
tion does not require displacement continuity, as the jet-head elevation is not constrained by
the presence of a material contour overhead.

As developed from the general solution of the ideal flow boundary-value problem, these
continuity conditions are as:

2.1. CONTINUITY OF VELOCITY

Following [3], the contour normal and tangential velocities on Figure 1 in the downward
moving coordinate system are:

Vn= −hcτ cos β+ (V + ν) cos β− w sin β, Vc = −hcτ sin β+ (V + ν) sin β+ w cos β,

(4)

where β(ζ, τ) in (4) is the angle of the local contour tangent:

β(ζ, τ) = tan−1 ∂

∂z
hc(z, τ ) at ζ = z/zc(τ ). (5)

From (2), hcτ in (4) is:

hcτ = β0τ

cos2 β0
(zcζ + δ sin β0) + δτ

cos β0
. (6)

Setting Vn = 0 in (4), the w velocity component can be eliminated in the contour tangential
velocity, leaving:

Vc sin β = V + ν − hcτ ≡ ν − ycτ , (7)

with ycτ in (7) from (1).
Define the contour vortex strength as γc(z, t), such that

Vc(ζ, τ ) = −1

2
γc(ζ, τ ). (8)

Substitute (8) into (7) with the unknowns moved to the left. The resulting kinematic boundary
condition is:

ν(ζ, τ ) + 1

2
γc(ζ, τ ) sin β(ζ, τ) = ycτ (ζ, τ ). (9)

The vertical velocity, v, in (9) is now written in terms of the vortex distributions by the Biot-
Savart law:

ν(ζ, τ ) = 1

2π

b(τ)∫
ζ0=−b(τ )

γ (ζ0, τ )

ζ0 − ζ
dζ0. (10)

Separate (10) into γc and γs parts (Figure 2) and implement that γ be an odd function in ζ in
the γs term. Substitute the result into (9). This produces a Carleman integral equation for the
contour vortex distribution, γc, in terms of the impact velocity, section geometry, and γs on
the free sheet, which are all considered as known at any iteration step:



A compliant-hull concept for planning craft wave-impact shock reduction 257

1

2
γc(ζ, τ ) sin β(ζ, τ) + 1

2π

1∫
ζ0=−1

γc(ζ0, τ )

ζ0 − ζ
dζ0 = ycτ (ζ, τ ) − 1

π

b(τ)∫
ζ0=1

γs(ζ0, τ )ζ0

ζ 2
0 − ζ 2

dζ0,

0 ≤ ζ ≤ 1.

(11)

The Carleman equation (11) has the following solution, as developed in the Appendix from
the theory outlined in [13, Section 81] (the time dependency is to be considered as implicit in
the terms of (12) for brevity of notation):

γc(ζ ) = 2 cos β̃(ζ )

{
ycτ (ζ ) sin β̃(ζ )−

− 1

π

ζκ(ζ )√
1 − ζ 2

2

1∫
ζ0=0

ycτ (ζ0)

√
1 − ζ 2

0 cos β̃(ζ0)

κ(ζ0)(ζ
2
0 − ζ 2)

dζ0 +
b∫

ζ0=1

γs(ζ0)

√
ζ 2

0 − 1

κ(ζ0)(ζ
2
0 − ζ 2)

dζ0

}.

(12)

In (12), from the Appendix and [3]:

β̃(ζ, τ ) ≡ tan−1[sin β(ζ, τ)] (13)

and,

κ(ζ, τ) ≡
K∏

k=1

∣∣∣∣∣ζ 2 − ζ ∗2
k+1

ζ 2 − ζ ∗2
k

∣∣∣∣∣
β̃∗
k

(τ )

π

. (14)

The product function (14) involves the K-element piece-wise linear discretization of the cyl-
inder contour in 0 ≤ ζ ≤ 1 as shown in Figure 3. The ζ ∗

k and β∗
k (τ ) are the end offsets and

angles of the K linear elements.
The K-discretization is within the general solution of the integral equation, as shown in

the Appendix. This is versus the ξ and ζ discretizations to be described in the next section,
which are at the boundary-condition level.

First write ycτ in (12) back in terms of the V (τ) and hcτ (ζ, τ ) components identified in (7)
and integrate the V (τ)-terms analytically to achieve:

γc(ζ ) = 2 cos β̃(ζ )

{
hcτ (ζ ) sin β̃(ζ )−

− ζκ(ζ )√
1 − ζ 2

V (τ) + 2

π

1∫
ζ0=0

hcτ (ζ0)

√
1 − ζ 2

0 cos β̃(ζ0)

κ(ζ0)(ζ
2
0 − ζ 2)

dζ0 + 1

π

b∫
ζ0=1

γs(ζ0)

√
ζ 2

0 − 1

κ(ζ0)(ζ
2
0 − ζ 2)

dζ0

}
(15)

Velocity continuity corresponds to removal of the singular terms in (15). For this purpose it is
useful to separate the integrands of (15) using the identity:

1

ζ 2
0 − ζ 2

≡ 1

ζ 2
0 − 1

(
1 + ζ 2 − 1

ζ 2
0 − ζ 2

)
. (16)

Substitute (16) in (15):
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Figure 3 Contour discretization at time τ .

γc(ζ ) = 2 cos β̃(ζ )

{
hcτ (ζ ) sin β̃(ζ )−

−ζκ(ζ )

[
1√

1 − ζ 2

V (τ) − 2

π

1∫
ζ0=0

hcτ (ζ0) cos β̃(ζ0)

κ(ζ0)

√
1 − ζ 2

0

dζ0 + 1

π

b∫
ζ0=1

γs(ζ0)

κ(ζ0)

√
ζ 2

0 − 1
dζ0

+

+
√

1 − ζ 2

 2

π

1∫
ζ0=0

hcτ (ζ0) cos β̃(ζ0)

κ(ζ0)

√
1 − ζ 2

0 (ζ 2
0 − ζ 2)

dζ − 1

π

b∫
ζ0=1

γs(ζ0)

κ(ζ0)

√
ζ 2

0 − 1(ζ 2
0 − ζ 2)

dζ0

]}.

(17)

A continuous velocity from the cylinder contour onto the free sheet at ζ = 1 therefore
requires, from (17):

V (τ) − 2

π

1∫
ζ0=0

hcτ (ζ0, τ ) cos β̃(ζ0, τ )

κ(ζ0, τ )

√
1 − ζ 2

0

dζ0 + 1

π

b(τ)∫
ζ0=1

γs(ζ0, τ )

κ(ζ0, τ )

√
ζ 2

0 − 1
dζ0 = 0. (18)

The velocity continuity condition (18) is one of the three (two) relations needed to step-iterate
the three (two) principal solution variables previously identified. The balance of the terms in
(17) is then available for the analysis of the then non-singular γc(ζ, τ ) as:

γc(ζ, τ ) = 2

π
cos β̃(ζ, τ )

{
hcτ (ζ, τ ) sin β̃(ζ, τ ) − ζκ(ζ, τ )

√
1 − ζ 2

×
2

1∫
ζ0=0

hcτ (ζ0, τ ) cos β̃(ζ0, τ )

κ(ζ0, τ )

√
1 − ζ 2

0 (ζ 2
0 − ζ 2)

dζ0 −
b(τ )∫

ζ0=1

γs(ζ0, τ )

κ(ζ0, τ )

√
ζ 2

0 − 1(ζ 2
0 − ζ 2)

dζ0

}.

(19)
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Note from (19) that the cylinder drop velocity is not involved explicitly in the contour vortex
strength.

2.2. CONTINUITY OF DISPLACEMENT

For the CUW flow regime it is necessary to require that the cylinder and free-surface contours
at the jet head form a continuous contour, to first order. This is equivalent to continuity of mass,
which to first order ignores the higher-order mass rate escaping through the jet. Similarly to
the [3] development for the fixed-cylinder-contour geometry, the approach is to integrate the
KBC, (9), across the small-time interval �τi from τi − �τi to τi .

�ν∗
i (ξ ) + 1

2
�γ ∗

ci(ξ ) sin βi(ξ) = �hci(ξ) − �Ywli . (20)

The subscript i in (20) denotes evaluation at the ith time, τi . The terms in (20) all represent
changes in the respective displacement components across the time step. The independent
variable ξ in (20) has replaced ζ to indicate non-dimensionalization on the jet-head offset zbi

rather than zci . The jet-head offset, zbi , is the point of free-surface contour separation. The
first term in (20) is again written in terms �γ ∗

ci by the Biot-Savart law, but with the domain of
ξ being (-1, 1):

�ν∗
i (ξ ) = 1

2π

1∫
ξ0=−1

�γ ∗
ci(ξ0)

ξ0 − ξ
dξ0. (21)

The solution to the Carleman equation (20) and (21) for �γ ∗
ci proceeds just as did the solution

to (9) and (10) for γc. Continuity of the displacement at ξ = 1 again requires that the terms
singular as 1/

√
1 − ξ 2 be set collectively to zero. The displacement continuity condition,

equivalent to (18) for velocity continuity, is therefore:

�Ywli − 2

π

1∫
ξ0=0

�hci(ξ0) cos β̃i (ξ0)

κi(ξ0)

√
1 − ξ 2

0

dξ0 = 0 (22)

with

κi(ξ) ≡
K∏

k=1

∣∣∣∣∣ξ 2 − ξ ∗2
k+1

ξ 2 − ξ ∗2
k

∣∣∣∣∣
β̃ik
π

. (23)

The contour discretization represented by (23) is the same as at (14), and Figure 3, except for
the non-dimensionalization on zb(τ), versus zc(τ ).

Equation (22) provides the second relation among the three unknowns of the CUW prob-
lem.

2.3. CONTINUITY OF PRESSURE

The pressure continuity condition is unchanged from that developed in [3]. It is summarized
here for completeness. The pressure coefficient in the ζ − τ system of Figures 1 and 2 is
written from the Bernoulli equations as:
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Cp(ζ, τ) = V 2(τ ) − V 2
n (ζ, τ ) − V 2

s (ζ, τ ) + 2zc(τ )

 b(τ )∫
ζ0=ζ

Vs(ζ0, τ )dζ0 + ζVs(ζ, τ )

+

+2zc

 b(τ )∫
ζ0=ζ

Vsτ (ζ0, τ )dζ0 + bτ (τ)Vs(b, τ)

 , 0 ≤ ζ ≤ b(τ). (24)

Cp on the free-sheet segment 1 ≤ ζ ≤ b(τ) must be zero. Differentiation of (24) in ζ with Cp

constant in ζ and τ gives the differential equation that the jet-head vortex strength γs(ζ, τ ) =
−2Vs(ζ, τ ) must satisfy:

(Vs − zcτ ζ )Vsζ + zcVsτ = 0, 1 ≤ ζ ≤ b(τ). (25)

This is just the one-dimensional Euler equation on the relative stream Vs − Vzτζ . It states that
the velocity of the fluid elements deposited onto the free-sheet at the jet head is constant in
time thereafter at the separation value. This provides the procedure for developing the shed
vortex sheets, with one element added to the sheet in each time step; [3] provides the details.

Equation (25) assures that the pressure is constant on the free sheet. The zero value of the
constant is established by back substitution of (25) in (24):

0 = V 2(τ ) − V 2
n (τ ) − V 2

s (b, τ ) + 2(zcbτ + zcτ b)Vs(b, τ). (26)

With zbτ (τ ) ≡ zcbτ + zcτ b, (26) gives the formula:

zbτ (τ ) = V 2
s (b, τ ) + V 2

n (τ ) − V 2(τ )

2Vs(b, τ)
. (27)

On the free vortex sheet, to first order, Vn = 0 in (27) for the CUW flow, and Vn = V for CW.
Equation (25) and formula (27) provide for pressure continuity on the free vortex sheet

occupying 1 ≤ ζ ≤ b(τ).

3. Hydrodynamic analysis

The objective is to use the preceding results to compute the impact acceleration time history
for a cylinder in free-drop, with specified contour geometry and geometric changes, β0(t) and
δ(z, t), according to (1) and Figure 1.

A multi-layered, nested iteration of the nonlinear system of equations is required for ad-
vancing in time from the initial condition. Stable and robust numerical solution algorithms
are essential, and are achieved here by reducing the mathematical solution as far as possible
analytically before turning to the computer.

3.1. INITIALIZATION

The numerical procedure first reads the parameters for the ζ and τ discretizations, the fixed
and time-variable contour geometry, β0(t) and δ(z, t), and the cylinder weight and drop height.
The drop height, d, determines the initial impact velocity V (0) = √

2gd and the weight, W ,
along with the hydrodynamic forces, is needed for calculating the cylinder deceleration in any
time interval.
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For the work reported here, the space 0 ≤ ζ ≤ 1 is represented by 100 elements of lengths
distributed to suit the physics, and 200 time steps are computed in 0 ≤ τ ≤ 0·7. For the
contour discretization of Figure 3, the number of elements, K, is set as 25.

The initial condition is established from the wedge similarity solution at a small time
interval �τ0 after impact at τ = 0; refer to [3]. The initial solution parameters of Vs(1,�τ0),

zb(�τ0) and zc(�τ0), as well as the time derivatives zbτ (�τ0) and zcτ (�τ0), are established by
the similarity solution. The initial similarity solution also provides the contour initial pressure
distribution and hydrodynamic force, leading to a deceleration over the interval and a new,
slightly reduced, impact velocity, V (�τ0) ≡ V (τ1) ≡ V1 to commence the non-similar
integration in time.

3.2. SOLUTION ITERATION - CUW

The CUW phase occurs first in the flow development, and is the most important in the impact
time history. At all time increments, including the first, the solution must be iterated using
the velocity continuity, displacement continuity, and pressure continuity formulations of the
preceding section.

At any time τi = τi−1 + �τi , given the complete solution at τi−1, a new projected trial
impact velocity Vi is first integrated over �τi with Vi−1 and V̇i−1 as:

Vi = Vi−1 + 1

2
(V̇i−1 + V̇ I

i )�τi, (28)

where V̇ I
i in (28) represents the I th iterate in the outer-loop of the ith time step. The outer-loop

convergence criteria is on V̇ I
i .

The change in water-line is next calculated in the I th loop iteration at time i, from (28):

�Ywli = 1

2
(Vi − Vi−1)�τi. (29)

3.2.1. Jet head off-set �zbi , by displacement continuity
From the waterline increment (29), the displacement continuity equation, (22), is iterated in a
local inner loop. This local iteration is on �zbi , through the scaling variable ξ = z/zbi in (22).
Taking �hc(ξ) cos βi(ξ) as piecewise constant in Nz intervals over 0 ≤ ξ ≤ 1, (22) becomes
the following series:

�Ywli = 1

2λi

Nz∑
j=1

�hcij cos β̃ij

κij

[
ξ 2λi
n F (λi, λi, 1 + λi; ξ 2

n )
]j+1

n=j
. (30)

In (30), from Figure 3, λj = 1

2
+ β̃∗

iK

π
and F denotes the hypergeometric function of the

first kind, [14]. The κij function in (30) is from κi(ξ) at (23). Equation (23) is first multiplied

and divided by the factor

(
1 − ξ 2

ξ 2

) β̃∗
iK
π

. The divided factor remains with the balance of the

integrand in (22) and is integrated piecewise in achieving the F -function in (30). This leaves
the κi(ξ) function in (30):

κi(ξ) =
(

1 − ξ 2

ξ 2

)− β̃∗
iK
π

κi(ξ). (31)
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Formula (31) is now written, using the explicit form of (23):

κi(ξ) =
(

ξ ∗2
K − ξ 2

ξ 2

)− β̃∗
ik
π K−1∏

k=1

∣∣∣∣∣ξ ∗2
k+1 − ξ 2

ξ ∗2
k − ξ 2

∣∣∣∣∣
β̃∗
ik
π

. (32)

Formula (32) is a completely continuous function in 0 ≤ ξ ≤ 1. It is slowly varying in ξ and
has been extracted piecewise in discretizing the integral (22) to the form of (30). However, in
order to avoid dealing numerically with the canceling singularities, the function (32) is fit at

the following set: ξ ∗
1 = 0, ξ ∗

K+1 = 1 and at the Figure 3 element mid-points ξ
∗
 = 1

2
(ξ ∗

+1+ξ ∗
 ),

 = 1, . . . , K. An interpolation then produces the Nz κij set for use in (30):

κij =
(

ξ ∗2
K − ξ

2
j

ξ
2
j

)− β̃∗
iK
π K−1∏

k=1

∣∣∣∣∣ξ ∗2
k+1 − ξ

2
j

ξ ∗2
k − ξ

2
j

∣∣∣∣∣
β̃∗
ik
π

ξ j = 1

2
(ξj+1 + ξj ) j = 1, . . . , Nz, (33)

where �zbi in (30) is varied systematically until �Ywli by (30) is equal to the I th iterate value
at (29).

3.2.2. Jet velocity, Vsi1, by pressure continuity
Pressure continuity is next used to calculate the fluid velocity entering the jet at the jet head,
Vsi(bi), from (25) and (27). Here an approximation has been made in the theory of [3]. In the
original work the jet-head vortex strength is in a distribution of elements over the free sheet
segment as prescribed by Euler’s equation, (25) via the DBC. However, it was found, due to
the extreme shortness of the free sheet segment in the CUW case, that numerical convergence
was improved without loss of accuracy by representing the jet-head segment, 1 to b(τ), as one
of uniform strength γsi(1), as in the similarity solution. From (1) and Figure 2:

Vsi(bi) = Vsi(1) ≡ Vsi1 = −1

2
γsi1 for the CUW case. (34)

Substitution in (27), with Vni = 0 then gives:

Vsi1 = zbiτ +
√

z2
biτ + V 2

i , (35)

where zbiτ = �zbi

�τi

, with �zbi from the iteration at (36).

3.2.3. Zero pressure-point offset, zci , by velocity continuity
Finally, velocity continuity is applied to find zci in the current I th iteration loop. Equation (18)
is first rewritten for the I th iterate of the ith time step as:

Vi − 2

π

1∫
ζ0=0

hcτi(ζ0) cos β̃i (ζ0)

κi(ζ0)

√
1 − ζ 2

0

dζ0 − 2

π

bi∫
ζ0=1

Vsi(1)

κi(ζ0)

√
ζ 2

0 − 1
dζ0 = 0. (36)

The only unknown in (36) at this stage of the time i iteration is bi = zci/zbi , with zbi known
from the preceding displacement continuity calculation. The second term in (36) has the same
general form as (30), and the third term, for the single free-sheet element of the CUW case,
also integrates in terms of the hypergeometric function of the first kind. The result at (36) is:
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Vi − 1

πλci

Nz∑
j=1

hcτij cos β̃ij

κcij

[
ζ 2λi
m F (λci, λci , 1 + λci; ζ 2

m)
]j+1

m=j
−

− 1

πλsi

Vsi1

κsi1
(b2

i − 1)λsiF (λsi, λsi, 1 + λsi; 1 − b2
i ) = 0.

(37)

In (37), in general, the subscript ‘c’ denotes cylinder material contour and ‘s’ denotes free
vortex sheet contour. Specifically:

λci = 1

2
+ β̃∗

iK

π
, (38)

λsi = 1

2
− β̃∗

iK

π
, (39)

κcij =
(

ζ ∗2
K − ζ

2
j

ζ
2
j

)− β̃∗
iK
π K−1∏

k=1

∣∣∣∣∣ζ ∗2
k+1 − ζ

2
j

ζ ∗2
k − ζ

2
j

∣∣∣∣∣
β̃∗
ik
π

, ζ j = 1

2
(ζj+1 + ζj ) j = 1, . . . , Nz, (40)

κsi1 =
(

ζ 2
i1 − ζ ∗2

K

ζ 2
i1

)− β̃∗
iK
π K−1∏

k=1

∣∣∣∣∣ζ 2
i1 − ζ ∗2

k+1

ζ 2
i1 − ζ ∗2

k

∣∣∣∣∣
β̃∗
ik
π

, ζi1 = 1

2
(1 + bi). (41)

Here, (38) and (40) are the same forms as for the displacement continuity condition, (30),
but differ quantitatively due the scaling of z on zci rather than zbi (Figure 3). (41) reflects the
truncation of the free vortex sheet to the lead elements as discussed at (34). zci is determined
through iteration of bi , trancendentally, in satisfying (37).

3.2.4. Contour vortex strength, γci(ζ )

It is necessary at this stage to calculate the pressure and hydrodynamic force on the contour for
evaluation of the acceleration V̇ I+1

i needed at the return to (28). The contour vortex strength
needed for calculation of the cylinder contour pressure distribution is (19). From (19) at time
i:

γci(ζ ) = 2

π
cos β̃i (ζ )

{
hcτi(ζ ) sin β̃i (ζ ) − 2ζκi(ζ )

√
1 − ζ 2

×
 1∫

ζ0=0

hcτi(ζ0) cos β̃i(ζ0)

κi(ζ0)

√
1 − ζ 2

0 (ζ 2
0 − ζ 2)

dζ0 + Vsi1

bi∫
ζ0=1

1

κi(ζ0)

√
ζ 2

0 − 1(ζ 2
0 − ζ 2)

dζ0

}
0 ≤ ζ ≤ 1

(42)

Separate this function into two:

γci(ζ ) = γcic(ζ ) + γcis(ζ ). (43)

Integration of the free sheet contribution, γcis(ζ ), produces:

γcis(ζ ) = − 2

π

κci(ζ )Vsi1 cos β̃i (ζ )

λsiκsi1
Qi1(ζ )λsiF [λsi, λsi, 1 + λsi;Qi1(ζ )] (44)
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with: Qi1(ζ ) ≡ ζ 2(b2
i − 1)

b2
i − ζ 2

; λsi and κsi1 in (44) are from (39) and (41); κci(ζ ) is by (40) but at

general ζ in 0 ≤ ζ ≤ 1. Formula (44) is singularity-free in 0 ≤ ζ ≤ 1 so that γcis is evaluated
directly at the Nz + 1 element end points.

Reduction of the γcic(ζ ) component of (42) proves to be a challenge because of the singular
integrals. Write this component first as:

γcic(ζ ) = 2

π
cos β̃i (ζ )

{
hcτi(ζ ) sin β̃i (ζ )−

−2ζκci(ζ )
√

1 − ζ 2

Nz∑
j=1

hcτij cos β̃ij

κcij

ζj+1∫
ζ0=ζj

ζ
2β̃∗

iK

0 (1 − ζ 2
0 )− 1

2 − β̃∗
iK
π

ζ 2
0 − ζ 2

dζ0

}
.

(45)

Denote the integral in (45) as �Iij (ζ ), and its integrand as INTi(ζ0, ζ ). The ζj here are the end
point offsets of the Nz elements in 0 ≤ ζ ≤ 1. Iij has three different evaluations depending on
the positions of the ζj , ζj+1 integral limits relative to the singularity at ζ . These are denoted
as follows:

For ζ > ζj+1:

I−
ij (ζ ) ≡

ζj∫
ζ0=0

INTi (ζ0; ζ )dζ0 so that : �Iij = I−
ij+1 − I−

ij , (46)

For ζ < ζj :

I+
ij (ζ ) ≡

1∫
ζ0=ζj

INTi(ζ0; ζ )dζ0 so that : �Iij = I+
ij − I+

ij+1, (47)

For ζj < ζ < ζj+1:

I 0
ij (ζ ) ≡

1∫
ζ0=0

INTi (ζ0; ζ )dζ0 so that �Iij = I 0
ij − I−

ij − I+
ij+1. (48)

The integrals in (46) to (48) evaluate as follows:

I−
ij (ζ ) = − 1

2λ−
i ζ 2

(
ζ 2
j

1 − ζ 2
j

)λ−
i

F

[
λ−

i , 1, 1 + λ−
i ;
(

ζj

ζ

)2
(

1 − ζ 2

1 − ζ 2
j

)]
(49)

with λ−
i ≡ 1

2
+ β̃∗

iK

π
,

I+
ij (ζ ) = 1

2λ+
i (1 − ζ 2)

(
1 − ζ 2

j

ζj

)λ+
i

F

[
λ+

i , 1, 1 + λ+
i ;
(

ζ

ζj

)2
(

1 − ζ 2
j

1 − ζ 2

)]
(50)

with λ+
i ≡ 1

2
− β̃∗

iK

π
,
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I 0
ij (ζ ) = π tan β̃∗

iK

2ζ
√

1 − ζ 2

(
ζ 2

1 − ζ 2

) β̃∗
iK
π

. (51)

Formula (45) is evaluated at the centers of the Nz elements in 0 ≤ ζ ≤ 1 as:

γcic(ζ )= 2

π
cos β̃i (ζ )

hcτi(ζ ) sin β̃i (ζ )−2ζ κci(ζ )

√
1−ζ

2


Nz∑
j=1

hcτij cos β̃ij

κcij

�Iij (ζ ) ,

where : ζ  = 1
2 (ζ + ζ+1)  = 1, . . . , Nz. (52)

The values at the contour element end-point are then interpolated from (52).

3.3. SOLUTION ITERATION - CW

The chine-wetted (CW) phase of the impact commences at the time that the zero pressure
offset, zc(τ ), reaches the chine, Zch(τ ). Refer to Figure 1. After this time zc(τ ) is constrained
to the known Zch(τ ), but zb(τ) continues its traverse on out across the free-surface. The
hydrodynamic theory covering the CW case and the hydrodynamic analysis is the same as
developed in the preceding subsection for the CUW flow, except in two respects. (1) There is
one less parameter unknown (zc) and one less solution condition: displacement continuity;
(2) With continuing outward progression of the jet head relative to the chine, the vortex
sheet zc(τ )-to-zb(τ) cannot be represented by a single element in the pressure and velocity
continuity conditions.

The two principal parameter unknowns here are the jet-head velocity zbiτ and the chine
separation velocity Vsi1.

Define the number of time steps to chine wetting icw and the time as τicw = τi−1 + �τicw.
�τicw is interpolated from the initially set value at this i, along with the other solution variables
involving time integration. The iteration therefore resumes at the start of a new outer loop at
(28) at i = icw + 1.

3.3.1. Pressure continuity
The jet-head velocity at time i is (27):

zbiτ = V 2
si(bi) + V 2

ni − V 2
i

2Vsi(bi)
. (53)

In the downward-moving coordinate system the velocity normal to the free surface is Vi to
first order. Formula (53) is therefore reduced to:

zbiτ = Vsi(bi)

2
. (54)

The implementation here is exactly as covered in [3]. In the interest of summary, the difficulty
here is that the velocity Vsi(bi) in (54) is now the jet velocity at the jet-head, zbi = zcibi , and
not the jet velocity Vsi1 at jet separation, zci .

The free-vortex sheet between zci and zbi is composed of vortex elements, with one new
element added at zci in each time step. The balance of the elements in the sheet redistribute
as required by (25) to-satisfy the Eulers equation of zero particle acceleration. But the new
element added at zci has unknown velocity Vsi1 as well as unknown length δbi1. The relative
lengths of the sheet elements are denoted as δbij , with end points at ζij , and the element
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velocities are denoted as Vsij ; j = 1, ni . ni is the number of elements in the sheet at time i,
which is equal to the number of time steps beyond chine-wetting. Refer to Figures 7 and 8 of
[3]. Here bi is related to the δbij and ζij by:

ζij = 1 +
j∑

k=1

δbij ≡ ζij−1 + δbij j = 1, . . . , ni; bi = ζini
(55)

and

δbij = δzbni−j+1

zci

with δzbi = (zbiτ − zciτ )�τi. (56)

With all Vsij and δbij , from j = 2, . . . , ni known from previous time steps, the selection of a
trial Vsi1 determines an iterate of the unknown δbi1, and therefore zbiτ and zbi , by way of (54),
(55), and (56). An essential difference numerically relative to the CUW case is that Vsi1 and
δbi1 are in coupled, rather than uncoupled, iteration loops within the outer loop on Vi .

3.3.2. Velocity continuity
Vsi1, for the δbi1 iterate determined as above, is from velocity continuity. The discretization of
(18) for the CW case now includes the full free-sheet induction with ni elements. Comparing
to (37):

Vi− 1

2λci

Nz∑
j=1

hcτij cos β̃ij

κcij

[
ζ

2λi

im F (λci, λci, 1 + λci; ζ 2
im

]j+1

m=j
−

− 1

λsi

ni∑
j=1

Vsij

κsij

[
(ζ 2

im − 1)λsiF (λsi, λsi, 1 + λsi; 1 − ζ 2
im)
]j
m=j−1 = 0.

(57)

The λ’s and κ’s in (57) are the same as (38) to (41) for CUW, except κsij is here generalized
for j = 1, . . . , ni sheet elements.

3.3.3. Contour vortex strength, γci(ζ )

The contour vortex strength again differs from the CUW case only as to the free sheet vortex
element number. For γci(ζ ) written again as (43),

γci(ζ ) = γcic(ζ ) + γcis(ζ ) (43)

the expansion is in γcis(ζ ) only:

γcis(ζ ) = − 2

π

κci(ζ ) cos β̃i(ζ )

λsi

ni∑
j=1

Vsij

κsij

(
Qim(ζ )λsiF [λsi, λsi, 1 + λsi;Qim(ζ )])j+1

m=j
(58)

with Qij (ζ ) in (58) generalized from (44) by replacing bi by ζij .

3.4. PRESSURE AND SECTIONAL FORCE COMPUTATION

Substitution of (25) and (26) in (24) gives the pressure on the cylinder contour, for either the
CUW or CW cases, as:

Cpi(ζ )= 1

4

[
γ 2

ci(1) − γ 2
ci(ζ )

]−zciτ

 1∫
ζ0=ζ

γci(ζ0)dζ0 + ζγci(ζ ) − γci(1)

−zci

1∫
ζ0=ζ

γciτ (ζ0)dζ0.

(59)
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The second and third groups of terms in (59) are the time rate-of-change of velocity potential
on the contour. The ζciτ derivative in the last integral is computed as a backward difference
across the time step.

In passing, it is here that coupling of the pressure distribution with the structural model
for calculating the deflection distribution to start the next iterate at time i is effected in the
complete analysis Vorus and Royce [9].

The hydrodynamic force per unit length of the cylinder is, from (59):

Cf i ≡ fi

1

2
ρV 2

0 Zch0

= 2zci

1∫
ζ=0

Cpi(ζ )dζ. (60)

3.5. IMPACT ACCELERATION COMPUTATION

This concludes the calculations of the I th loop iteration at time i. The cylinder impact accel-
eration to initiate the I + 1 iteration loop of the ith time step at (28) is:

V̇ I+1
i = Cf i − Cw

Cm

, (61)

where Cw is the cylinder weight coefficient,

Cw = w

1

2
ρgV 2

0 Zch0

, (62)

and w is the cylinder weight per unit length. Cw also equals the mass coefficient,

Cm = Cw = m

1

2
ρV 2

0 zch0

. (63)

The looping between (28) and (61) continues in the ith time step until the change from
V̇ I

i to V̇ I+1
i is sufficiently small. Time is then incremented from i to i + 1 and the iteration

restarted, and so on, until the solution has been computed for the total time specified.

4. Computations

4.1. INPUT DATA

As explained in the introduction, the cylinder deflection data, β0(t) and δ(z, t), Figure 1, that
has been selected for demonstration of the preceding analysis formulation is essentially that
from the cylinder drop test simulations reported in [9]. Figure 4 is a plot of the nose-tail line
angle �β0(τ ) = β0(τ ) − β0(0), degrees, versus τ = V0t/Zch, over the 0 ≤ τ ≤ 0·7 duration
of the calculation.

Figure 4 shows only the change in deadrise angle associated with the cylinder compliance.
This must be added to the 20 deg β0(0) angle of the unflexed cylinder in constructing equation
(2); refer to Figure 7. In the time non-dimensionalization, Zch is the chine offset, which is
fixed in time for these calculations: Zch(t) = Zch(0) = Zch. V0 is the initial impact velocity,
as addressed at Figure 2.
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Figure 4. Nose-tail line angle variation with time,
β0(τ), for impact acceleration computations.

Figure 5. Nose-tail line maximum camber variation
with time, δmax(z, τ), for impact acceleration com-
putations.

Figure 6. Nose-tail line maximum camber offset variation with time for impact acceleration computations.

Figure 5 is the variation with τ of the camber maximum, δmax(z, τ ), non-dimensioned on
Zch. Camber is defined, in the sense of a hydrofoil section, as the offset normal to the inclining
β0(t)-nose-tail line at any time. Figure 6 is the offset of the camber maximum transversely
from the keel, also dimensionless on Zch.

The camber is approximately cubic in z, zero at z/Zch = 0 and 1, by definition, with the
maximum shifting outward in time, as indicated by Figure 6.

The composite deflection assembled by (1) from the β0 and δ data of Figures 4, 5, and 6
is shown on Figure 7. Figures 7a and 7b are the body-plans, to scale, of the rigid and flexing
cylinder, as it falls through the free surface at y = 0. On Figure 7, ζ = 1 is the chine half-
beam. The figure is plotted for the deflection distribution over the half-beam for 51 values of
time in 0 ≤ τ ≤ 0·7. The sectional lines on Figure 7 correspond to the depth of the cylinder,
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Figure 7a. Body plan for rigid cylinder falling with
velocity V (τ) through free-surface.

Figure 7b. Body plan for flexing cylinder falling with
velocity V (τ) through free-surface.

yc(ζ, τ ), (1), at the 51 times τ from initial entry, the upper line set, at τ = 0, to the deepest at
the final time τ = 0·7. The extents of the contour lines are to the zero pressure point, which
is zc(τ ) for τ < τcw and Zch after chine wetting. The concentrations of contour lines on both
Figures 7a and 7b correspond to the reduction in time increment in the immediate vicinity of
chine wetting.

From a comparison of the data of Figures 7a and 7b, the relative maximum where flexural
deflection space occurs at the chine with a value less than 10% of the cylinder chine beam.

4.2. HYDRODYNAMIC CALCULATIONS

4.2.1. Impact acceleration, velocity, and pressure distributions
The predicted impact acceleration and cylinder downward velocity versus time for both the
rigid and the deflecting cylinder is shown on Figure 8.

The velocities in Figure 8 are dimensionless on V0 and the accelerations as VDOT ≡
V̇ (t)Zch

V 2
0

. With dimensionless gravity defined as G ≡ gZch

V 2
0

, the impact acceleration in g’s is

VDOT/G.
For the case developed here, from [9], the cylinder half-beam, Zch, is 1 ft = 0·305 m. With

a drop height d = 4 ft (1·22 m), the initial impact velocity is:

V0 = √2gd = 4·89 m/sec.

This gives a total time for the computations as tmax = τmaxZch/V0 = 0·0436 sec. The cylinder
dimensionless weight, (63), is 0·17 and the dimensionless gravity G = 0·125. With this G,
the maximum impact acceleration of Figure 8, corresponding to the rigid cylinder, is therefore
approximately 2·7/0·125 = 21·6 g’s. The maximum acceleration of the cylinder with flexure,
from Figure 8, is approximately VDOT = 1·4, implying a maximum acceleration in g’s of
1·4/0·125 = 11·2. The reduction in impact acceleration with the particular hull deflection
characteristic specified is implied by Figure 8 to be essentially 50%.
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Figure 8 Impact velocity and acceleration versus time, predicted for the rigid and deflecting cases.

This result is consistent with the calculated performance of the LocalFlex system repor-
ted in [9], only better, by around 10%. The calculated distribution of acceleration now also
matches better with the experimental data presented in that reference as to the level and phase
of the flexural oscillations that occur in time. The improvement is due to elimination of an
inconsistency in the predictive code, which is also reflected in the theoretical development
presented here. Although the LocalFlex air bag model incorporated in the original analysis
has not changed, this is not particularly relevant here, as the source of the deflection input of
Figures 4–7 is not a focus of this work. The focus is only to demonstrate the level of impact
reduction possible with surface flexural dynamics, however such might be produced.

With regard to the Figure 8 accelerations, the reason for the single narrow peak in the rigid
cylinder characteristic is clearly the superposition of the two opposite effects influencing the
impact force; these are expanding cylinder breadth and decreasing downward velocity with
time. Early in the slam the increasing breadth, occurring at high velocity initially, outweighs
the rate of velocity reduction, but the roles reverse with time, leaving a clean impact force
maximum, and therefore the acceleration peak.

The times of chine wetting for the two cases are also evident on Figure 8 as the discon-
tinuities appearing in the acceleration curves. This behavior occurs in the calculation due to
the negative infinite rate-of-change of zc(t) with time at the abrupt encounter with the chine.
Although second-order flow effects do eliminate this singularity in the real-flow physics, its
appearance in the analysis is believed to be inconsequential to predictions of interest.

Note also from Figure 8 that even though the impact velocity for the deflecting cylin-
der, with the lower impact acceleration, remains at a higher level resulting in more rapid
penetration depth, the time to chine-wetting is increased. This may appear initially to be
a contradiction; the explanation is that the chine is rising with time as the plating deflects
upward, as shown by a comparison of Figures 7a and 7b.
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Figure 9. Pressure distributions in z for rigid cylinder
for values of time, from Equation (59).

Figure 10. Pressure distributions in z for compliant
cylinder for values of time, from Equation (59).

The pressure distributions versus z for values of time are plotted on Figures 9 and 10 for
the rigid and compliant cases, respectively. The pressure falls rapidly enough in the compliant
case to significantly limit the expanding breadth effect in amplifying the impact force with
time progression.

In Figure 10, the oscillations which appear in the accelerations of Figure 8 are also seen
in the compliant-cylinder pressure distribution at the same times in the slam, but not as pro-
nounced due to the relative scale. These relatively low-level oscillations occur in the dynamics
of the plating flexure exhibited in Figure 7b (as better seen in Figure 11 to follow).

4.2.2. Deflection and contour wetting
The deflection contours, Figure 7, are revealing with regard to the detailed physics of the
impact processes demonstrated on Figure 8. A twice-vertical scale version of the flexural part
of Figure 7b, relative to the cylinder, is added as Figure 11. This is for elucidating the driving
hydrodynamics of Figure 8.

The Figure 11 curves represent the full deflection of the contour out to the chine at all 51
times; Figure 7 plots the deflections only out to zc(τ ). The faint (overlaid) symbols added to
the Figure 7b deflection curves in Figure 11 indicate the position of the zero-pressure offset,
zc(τ ), at the respective times. This corresponds to the loaded length of the section at each
time, and equal to the lengths of the pressure curves on Figure 10.

The impact acceleration reduction achieved by the upward plate deflection can be viewed
as producing a negative added mass. This superimposes with the positive added mass due
to the generally downward velocity of the cylinder. This is a correct view, but incomplete.
‘Arching’ of the plate must be minimized. Arching produces a positive convective pressure
that tends to nullify the favorable negative temporal component accompanying the relative
upward movement. This pressure amplifying effect of arching is, for example, much as in a
‘flare-slam’ of a displacement vessels with concave side-shell camber in the bow region.

Ando, [15], concluded that plating flexibility could not be used as a device for reducing
impact in V-bottom boats because the adverse effects of the ‘arching’ more than offset the
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Figure 11. Composite Deflection, �hc(z/Zch, τ) by equation (2) (twice vertical scale).

beneficial effects of the plate flexibility. But that work not only ignored the plating dynamics
that must be exploited, but assumed the plate to be pinned at both the keel and the chine ends.

The key to the effectiveness of the Figure 11 deflection characteristic is the rapid upward
movement of the plate tip at the chine. This is in the sense of ‘cracking a whip’. A desirable
hydrodynamic objective is achieved, which is clearly exhibited in Figure 11: The goal with
compliance of this type is to have the end of the pressure curve always moving upward in
time. As noted from Figures 9 and 10, the CUW pressure distribution peaks very near the
end of the pressure curve at any time. If the end of the pressure curve is always rising, the
increasing wetting figuratively tends to roll the pressure peak outward and off the chine. The
achievement is reduction in the slam intensity, as exhibited on Figure 8.

5. Conclusion

This paper has dealt with only part of the analysis capability needed for full study and devel-
opment of compliant-surface concepts for wave-impact shock reduction of high-speed planing
craft. It has presented a robust and theoretically consistent theory and analysis of hydrodynam-
ics of hull-surface pressure distributions and resulting impact forces and accelerations for
specified spatio-temporial hull-surface deflection distributions. This analysis must be mated
with mechanisms for controlling the compliant distributions to maximize the shock reduction
results sought. The LocalFlex system reported by [9] is a first effort in this direction. The hull
compliance characteristics of the development of [9], demonstrated here, appear to be of the
type to be potentially attractive for practical applications in high-speed craft. The ‘LocalFlex’
compliance appears to have a potential effectiveness level of at least 50% reduction of wave
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impact acceleration, and it should not require an unreasonable space envelope within the boat.
The vertical depth requirement is predicted to be no greater than around 10% of the craft beam.
And since the slam, at least as to origin, is believed to be typically centered just forward of
mid-boat, the shock reduction installation might be limited to a relatively small fraction of the
boat length in that region.

The major difficulty in developing an operational system of this type appears to be its
actuation. For the boat sizes and speeds for which this type of technology is so badly needed,
the typical operating seaway suggest slams occurring every one to two seconds. Cycling of the
system from slam deflection to redeployment to re-actuation, etc., would require achievement
on what would appear to be a severely short time scale relative to the geometric and inertial
scales imposed.

While some work has been done by this author on practical implementation, further effort,
and effort by others, is needed. The hydrodynamic theory presented here is offered as a basis
for continuing work. It is believed to be capable of relatively reliable analysis of concept trade-
offs, as is essential, in general, for the successful development of new engineering design. This
is here, specifically, to allow high speed boats to run at higher speed in rough sea conditions.
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Appendix. Kinematic boundary condition for rigid cylinder impact integral equation
solution

A1. GENERAL SOLUTION

Application of the kinematic boundary condition of zero normal velocity on the bottom of the
rigid, relatively flat, cylinder, impacting the surface with velocity V (t), produces a linear one-
dimensional integral equation to be inverted for the wetted contour vortex strength γc(ζ, τ );
refer to text Equation (11):

1

2
γc(ζ, τ ) sin β(ζ, τ) + 1

2π

1∫
ζ0=−1

γc(ζ0, τ )

ζ0 − ζ
dζ0 = −V (τ) − 1

π

b(τ)∫
ζ0=1

γs(ζ0, τ )

ζ 2
0 − ζ 2

dζ00 ≤ ζ ≤ 1.

(A1)

From Tricomi, [16, Section 4.4] or Muskhelishvili, [13, Section 81], (A1) is a singular integral
equation of the Carleman type, of the general form:

a(ζ )γc(ζ ) − 1

λ

1∫
ζ0=−1

γc(ζ0)

ζ0 − ζ
dζ0 = f (ζ ), −1 ≤ ζ ≤ 1. (A2)

All singular integrals appearing here and in the following are to be interpreted as principal
value integrals.

Comparing (A1) and (A2): a(ζ ) = ∓ sin β(ζ ) on the complete interval −1 ≤ ζ ≤ 1. Also,
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λ = − 1

π
and f (ζ ) ≡ −2V − 2

π

b∫
ζ0=1

γs(ζ0)ζ0

ζ 2
0 − ζ 2

dζ0. (A3)

Time, τ , acts as a parameter in (A2) and is not explicitly shown for convenience of notation.
Following [13, pp. 235–238], (A2) represents a non-homogeneous Hilbert problem for

open contours, or ‘arcs’. The two arcs in this case are the two segments −1 < ζ < 0 and
0 < ζ < 1 on the ζ -axis; γc(ζ ) is holomorphic on each of these two arcs. The solution of
(A2) is:

γc(ζ ) = a(ζ )f (ζ )

a2(ζ ) + π2λ2
+ λχ(ζ )√

a2(ζ ) + π2λ2

1∫
ζ0=−1

f (ζ0)dζ0√
a2(ζ0) + π2λ2χ(ζ0)(ζ0 − ζ )

. (A4)

Define:

β̃(ζ ) = tan−1[sin β(ζ )]. (A5)

(A5) can then be written:

γc(ζ ) = sin β̃(ζ ) cos β̃(ζ )f (ζ ) − cos β̃(ζ )

π
χ(ζ )

1∫
ζ0=−1

cos β(ζ0)f (ζ0)

χ(ζ0)(ζ0 − ζ )
dζ0. (A6)

From [13], the function χ(ζ ) in (A4) and (A6) is, in general,

χ(ζ ) = P(ζ )eτ (ζ ) (A7)

with,

P(ζ ) =
2p∏

m=1

(ζ − cm)λm (A8)

and,

τ(ζ ) = 1

π

p∑
k=1

∫
Lk

θ(t)dt

t − ζ
(A9)

with,

θ(ζ ) = tan−1 λπ

a(ζ )
0 ≤ θ ≤ 2π, (A10)

In (A8) and (A9), p is the number of arcs, whose end points have coordinates cm. The λm are
integers selected according to the character of the function at the end points of the respective
arcs Lk.

For this specific problem: p = 2 and the four cm are −1,0; 0, 1. Therefore, (A8) is:

P(ζ ) = (1 + ζ )λ1ζ (λ2+λ3)(1 − ζ )λ4 . (A11)

But by the criterion of Muskhelishvili, [13, pp. 235–288], ζ = ±1,±0 qualify as ‘non-special’
ends, so that the choice of λk is to suit the choice of boundedness of γc(ζ ) at the respective
end points, ζ → cm.

Turning to (A9) and (A10):
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τ(ζ ) = 1

π

0∫
t=−1

θ−(t)

t − ζ
dt + 1

π

1∫
t=0

θ+(t)

t − ζ
dt (A12)

From (A5) and (A10), with a(ζ ) = ∓ sin β(ζ ),

θ±(ζ ) = −π

2
∓ β̃(ζ ). (A13)

Substitute (A13) in (A12) and integrate:

τ(ζ ) = log

√
1 + ζ

1 − ζ
+ 1

π

1∫
t=0

β̃(t)

(
1

t − ζ
+ 1

t + ζ

)
dt. (A14)

A2. SPECIFIC SOLUTION

At this point it is necessary to specify the form of β̃(ζ ) in order to continue the analytical
development beyond (A14). Referring to Figure 3 of the text, represent the cylinder contour
in 0 ≤ ζ ≤ 1 as piecewise linear with K elements, so that β(ζ ), and hence β̃(ζ ) by (A5), are
piecewise constant. The piecewise constant values of β(ζ ) are denoted as β∗

k , k = 1, K, by
Figure 3.

The Figure 3 discretization reduces (A14) to:

τ(ζ ) = log

√
1 + ζ

1 − ζ
+ 1

π

K∑
k=1

β̃∗
k log

∣∣∣∣∣ζ 2 − ζ ∗2
k+1

ζ 2 − ζ ∗2
k

∣∣∣∣∣ (A15)

Combining further in (A15),

τ(ζ ) = log


√

1 + ζ

1 − ζ

K∏
k=1

∣∣∣∣∣ζ 2 − ζ ∗2
k+1

ζ 2 − ζ ∗2
k

∣∣∣∣∣
β̃∗
k
π

 (A16)

Now substitute (A11) and (A16) back into (A7) to obtain the χ(ζ ) function in the solution
(A6) as:

χ(ζ ) = (1 + ζ )λ1ζ (λ2+λ3)(1 − ζ )λ4

√
1 + ζ

1 − ζ

K∏
k=1

∣∣∣∣∣ζ 2 − ζ ∗2
k+1

ζ 2 − ζ ∗2
k

∣∣∣∣∣
β̃∗
k
π

(A17)

At this point the λm in (A17) can be specified. In order that the solution exhibit the necessary
symmetry, the unique choice is λ1 = −1, λ2 = λ3 = λ4 = 0. This gives, from (A17):

χ(ζ ) = 1√
1 − ζ 2

K∏
k=1

∣∣∣∣∣ζ 2 − ζ ∗2
k+1

ζ 2 − ζ ∗2
k

∣∣∣∣∣
β̃∗
k
π

. (A18)

With this choice of the λm the square-root singularity is placed at ζ ± 1; this will ultimately
be removed by the velocity continuity (Kutta) condition imposed on the system solution. It is
to be understood from the principal value integral at (A12) that ζ �= ζ ∗

k in (A18) so that χ(ζ )

is continuous in 0 < |ζ | < 1.
Write (A18) for later use as
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χ(ζ ) ≡ κ(ζ )√
1 − ζ 2

(A19)

with

κ(ζ ) =
K∏

k=1

∣∣∣∣∣ζ 2 − ζ ∗2
k+1

ζ 2 − ζ ∗2
k

∣∣∣∣∣
β̃∗
k
π

. (A20)

It is now necessary to substitute the specific form of f (ζ ), (A3), into the solution (A6), and to
perform the indicated operations. An intermediate result that follows is:

γc(ζ )=2 cos β̃(ζ )


[

1

π
χ(ζ )�(ζ )−sin β̃(ζ )

]V + 1

π

b∫
t=1

γs(t)dt

t2 − ζ 2
− ζ

π2

b∫
t=1

γs(t)�(t)dt

t2 − ζ 2


(A21)

with

�(ζ) ≡
1∫

ζ0=−1

cos β̃(ζ0)dζ0

χ(ζ0)(ζ − ζ0)
. (A22)

Integration order interchange has been allowed in the reduction to (A22) in view of the non-
overlapping t and ζ0 ranges.

Although not a commonly encountered integral, (A22), for continuous but otherwise arbit-
rary κ(s), is:

�(s) =


π

(
−s +

√
1−s2 sin β̃(s)

κ(s)

)
s ≤ 1

π

(
−s +

√
s2−1

κ(s)

)
s > 1

(A23)

Substitution of (A19) and (A23) into (A21) produces:

γc(ζ ) = −2 cos β̃(ζ )ζκ(ζ )√
1 − ζ 2

V + 1

π

b∫
t=1

γs(t)
√

t2 − 1dt

κ(t)(t2 − ζ 2)

 (A24)

This is the general result applied the text, which can be seen in the rigid cylinder terms of
Equation (15).
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